移动通信后 3G 或 4G 技术前景探索

  移动通信自1980年面市以来,已经走过20几年,经历了第一代(1G)和第二代(2G),现正向第三代(3G)平滑演进,并在探索后3G 或4G的前景。
  
  1 移动通信的前20年
  第一代移动通信从开始商用到完成使命,大约由1980年持续到1994年,以频分多址(FDMA)制式提供普通模拟电话,实际数据速率为2.4 KBit/S。
  
  第二代移动通信,大约由1995年持续到本世纪初,采用时分多址(TDMA)制,支持数据电路交换,提供优质数字电话和简短文本的传输,数据速率为14.4 KBit/S(实际仅达9.6 KBit/S)。
  
  近年发展的二代半(2.5G)移动通信支持分组交换,数据速率目标为115 KBit/S(实际仅为40 KBit/S)。
  
  2G和2.5G移动通信技术,虽较1G有所提高,但随着用户数量的增加以及用户对多媒体业务的需求,其在使用频段、频谱利用率、接入速率以及网络能力等方面都显现不足。
  
  ITU早在20世纪80年代中期就盘算在2000年前后搞出一个工作在2 000 MHz频段的未来陆地移动通信系统(FPLMTS)。这个系统1996年正式以IMT-2000命名,通称为第三代移动通信系统(3G)。
  
  3G的目标概括起来如下:
  
  A) 全球统一标准,使用统一频段,提高频谱效率;
  
  B) 提供高质量的多媒体服务;
  
  C) 加强安全保密功能;
  
  D) 要求数据传输速率在室内环境下达到2 MBIT/S(步行384 KBit/S,车行144 KBit/S)。当然,还须容易从2G系统平滑过渡。
  
  3G系统采用码分多址(CDMA)和分组交换技术。与2G相比,3G系统容量增加,通信质量提高,并能实现全球性的无缝隙漫游,可为用户提供话音、数据、图像、电视等多媒体优质服务。
  
  目前,移动通信正处于由2G向3G平滑过渡之中,但原来希望统一标准、统一频率的目标并没有达到。现在有5个不同的3G标准,其中主要是ETSI的以GSM MAP为核心网、FDD WCDMA 为无线接口的标准,ANSI的以IS-41为核心网、FDD CDMA2000为无线接口的标准,以及我国提出的核心网与WCDMA相同的TDD TD-SCDMA为无线接口的标准。
  
  3G移动通信系统比起2G会有很大的改进,但仍然不能满足用户要求。主要问题在于:
  
  A) 没有一个统一的世界标准,难以做到全球无缝隙漫游;
  
  B) 语音是在由2G继承下来的基础结构上传输,而不是在IP网络结构上;
  
  C) 视频传输不会达到高清晰度的要求;
  
  D) 数据速率虽然有所提高,可难以快速传递大文本和大的E-Mail附件。
  
  2 ITU对后3G的设想
  考虑到3G系统的不足,ITU已对当前的3G系统提出了一些增强要求和措施(可以说是3G的改进型或称为3.5G):如引入高速下行链路分组接入(HSDPA)技术,采用比较好的调制技术,从而达到10 MBIT/S下行速率,蜂窝内的所有用户共享这一容量,对处于无干扰区域的用户给以较宽的带宽。又如把IP由核心网络(CN)扩展到无线接入网(RAN)、使CN与无线局域网(WLAN)互联、支持多媒体广播和组播等。
  
  ITU也开始考虑3G以后(BEyOND IMT-2000) 移动通信系统的远景,提出了后3G 移动通信系统的概念、框架、研究工作目标涉及主要内容、关键性的数据速率要求以及研究发展的进程。图1示出3G和设想中的后3G的主要性能。
  

 

  后3G或4G移动通信系统的具体情况现在很难想象,但是后3G或4G时代的宽带移动通信系统肯定不会像前几代那样只是蜂窝产业独家的天下。后3G 或4G系统将汇集无线接入、无线移动、无线LAN等先进技术,并结合全IP网络,为用户提供一个安全可靠、使用方便的无线移动INTErNET系统,能满足人类社会在未来若干年内对移动通信业务的要求。
  
  3 当前的一些研究动向
  ITU计划在2004年征集有关后3G或4G移动通信系统的方案。世界上一些有关部门、机构和学校已经在积极组织力量进行探索,并进行着大量的研究工作。
  
  3.1 移动宽带系统(MBS)
  
  移动宽带系统(MBS)是由欧洲委员会组织一些公司和学校合作完成的移动宽带设计方案。其物理层是基于大多数2G电话的TDMA变种,较高层则基于ATM。前面各代移动通信主要用于通话,间或兼容一些诸如短信之类的业务,而MBS则要使各种形式的服务分开。它是一个大的数据信道设施,可供各种形式的服务单独应用。
  
  估计此系统要商业化还得15年时间,开始使用可能在2010年,大量展开服务估计要到2020年。在这段时间,技术指标要改变,物理层将以为克服无线信号多径传输干扰而设计的正交频分复用(OFDM)技术为基础,同时放弃ATM改为面对IPv6,要用以前不用的40 GHz或60 GHz频谱来满足极其宽阔的带宽要求。
  
  3.2 IEEE 802.11系列
  
  目前,在移动中接入INTErNET的最快方法是通过无线LAN。美国IEEE于上世纪末开发了IEEE 802.11标准系列产品,其中有802.11、802.11A和802.11B,以及还在研发中的802.11G。802.11技术不太成熟,未见商用产品;802.11A有技术优势, 但难度大,商品化较晚,当前市场上大量使用的是802.11B。
  
  802.11B(常称为WI-FI)工作于无需发证的2.4 GHz频段,采用直接序列扩谱(DSSS)技术,最大物理速率达11 MBIT/S,实际通过量(第三层)最高可达6 MBIT/S,如果用作蜂窝,认为可以达到3.5G的要求。
  
  802.11A工作于无需发证的5 GHz频段,采用比DSSS相对复杂的正交频分复用(OFDM)技术,最高物理速率达54 MBIT/S, 实际通过量最高可达31 MBIT/S。除数据速率比较高、频带比较宽、干扰比较少外,5 GHz波段的信道数量总是比较多也是802.11A的优点。802.11A存在的问题是与802.11B产品的兼容性和互操作性问题。
  
  为了解决互操作性,IEEE发展 了802.11G,用以扩展802.11B的数据速率和覆盖范围并与其兼容。802.11B和802.11A的覆盖范围分别为100 M和80 M。802.11G使用2.4 GHz频段,采用了OFDA技术,覆盖范围可望达到150 M,但速率没有802.11A快,物理层速率可达54 MBIT/S,而实际通过量只有12 MBIT/S。
  
  为了提高802.11系列的工作能力,IEEE正在研究发展一些新标准:
  
  A) 802.11E旨在使802.11网络的QOS性能有所提高,用等同的TDMA模式取代以太网类似的MAC层,并对重要业务添加特殊纠错;
  
  B) 802.11F打算改进802.11中的交接(HANDOvEr)机制,使用户在2个不同的无线信道切换段或在2个附属于不同网络的接入点(AP)之间漫游时保持连接,这对于无线LAN的移动性非常重要;
  
  C) 802.11H要使802.11A的无线电发射功率和信道选择得到较好的控制;
  
  D) 802.11I着力提高802.11系统的安全保密问题。
  
  与60 GHz的MBS一样,以无线LAN为基础进行接入的问题也是每个接入点或基站能达到的距离很小,户内大约100 M,户外环境好的情况下也仅有几百米。这就是说,无线LAN在公众应用方面目前只能局限于少数热点,如空港旅客休息厅、会议中心、大旅馆以及商业区等。要想扩大服务范围,有些服务商寄希望于与现有的专用无线LAN协作,让他们来填补空隙。
  
  有些蜂窝运营商打算投入无线LAN产业,利用他们现有的计费基础设施和客户关系,提供蜂窝电话和802.11相结合的组件。
  
  IEEE正在搞一个称为高速无需核准的城域网(HUMAN)计划。它是一个使用802.11A做点对点链路的无线本地回路系统。笔记本电脑和蜂窝电话的用户可以在建筑物内,由802.11A LAN通过屋顶上的定向收发设备与外界联通。
  
  3.3 HIPErLAN2
  
  HIPErLAN2是欧洲电信标准协会(ETSI)于上世纪末开始组织研究发展的。
  
  HIPErLAN2与IEEE 802.11A在物理层差不多,即都工作在5 GHz,也采用OFDM技术,给出同样的数据速率,即最大物理速率高达54 MBIT/S,实际通过量达31 MBIT/S。二者的差别主要在MAC层,802.11A是沿用以前的无线以太网功能,而HIPErLAN2的MAC协议既支持对时间要求严格的业务,也支持异步数据,这样分组语音和视频可以得到较好的QOS。HIPErLAN2与有线侧的接口连接,适应ATM、3G移动系统、1394网络以及IP网络。
  
  HIPErLAN2设计得既是LAN也是WAN,并有较好的漫游性能。它的数据链路控制/无线链路控制子层具有发射功率控制和动态频率选择功能,从而提高频谱效率并降低其他同频系统干扰的可能性。HIPErLAN2支持认证、加密,具有较好的安全保密功能。
  
  HIPErLAN2接入点覆盖范围也很小,户内约100 M,户外几百米,与802.11A基本相同。
  
  3.4 5-UP
  
  IEEE和ETSI有一个名为5 GHz伙伴计划(5GPP)的合作项目,打算把802.11A和HIPErLAN2合成一个标准,暂时命名为5 GHz统一协议(5-UP)。这个标准试图把2个甚至3个信道结合起来,提供比现有的系统高得多的数据速率。
  
  5-UP将2个信道结合时,物理层速率可提高为108 MBIT/S,实际最大通过量为72 MBIT/S,信道间隔50 MHz。如果采取3个信道结合,提供的实际通过量大约可达100 MBIT/S,这显然高过大多数笔记本电脑能有的速率。
  
  3.5 多点多信道分配系统(MMDS)
  
  固定系统已经具备可与DSL、电缆调制解调器甚至光纤相竞争的多兆比(MUlTIMEGABIT)速度。有些服务商打算给现有的宽带系统加上移动性能。当用户移动时,ISP上行链路的固定天线旋转,其波束跟踪对准用户。
  
  较有可能成为下一代移动通信候选者的多点多信道分配系统(MMDS)使用蜂窝网络那样的点对多点式结构和与3G相同的频谱,覆盖也大约与3G相同(35哩),其最大数据速率小于10 MBIT/S(准确数字随供应